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Abstract 

Direct numerical simulations of the turbulent pipe flow of power-
law fluids are analysed in order to understand the way in which 
shear thinning affects turbulence. For a generalised Reynolds 
number of 7500, as the fluid becomes more shear thinning, the 
log-layer mean velocity profile deviates further above the 
Newtonian case.  Second-order turbulence statistics show a 
decrease for all correlations except for the axial turbulence 
intensity which increases marginally over its Newtonian 
counterpart.  The results show that the turbulent kinetic energy 
budget is modified by new terms that arise in the energy 
equation.  

Introduction  

Flows of non-Newtonian fluids occur in a wide range of practical 
applications including fine-particle mineral suspensions, sewage 
sludges, molten polymers, bodily fluids, paints and food products 
such as molten chocolate and mayonnaise.  A range of different 
types of non-Newtonian fluids exist but they can be broadly 
categorised as being either visco-elastic or not.  Turbulent drag 
reduction in visco-elastic flows has been of particular interest and 
has resulted in numerous studies (e.g. [1], [5]).  In other practical 
applications (e.g. minerals suspensions, sewage sludges) visco-
elasticity is not relevant.  For low to moderate concentration 
suspensions such as those found in minerals tailings applications, 
shear rheology alone is usually sufficient to describe the 
suspensions [6].  These fluids are well categorised with a non-
uniform viscosity that can depend on the local properties of the 
flow as well as the time history of the material.  

When history effects are not important and the viscosity can be 
approximated as a local function of the instantaneous velocity 
field, the fluid is known as a Generalised Newtonian (GN) fluid.  
In this paper we consider GN fluids in which the dynamic 
viscosity η is a function of the second invariant of the rate-of-
strain tensor !! , i.e.  

!=! !"( ), !" = 2sijsij , sij= 1
2  (!ui/!x j +!uj/!xi )      (1) 

In many important applications of GN fluids, the effective 
viscosity (i.e. shear stress divided by shear rate) is very high, and 
industrially relevant flows can be laminar, e.g. the discharge of 
thickened slurry in bauxite residue disposal [6]. However, in 
other cases the volumetric flow rates are sufficiently high or the 
effective viscosities sufficiently low that the flow can be 
transitional or turbulent. 

Experimental studies of GN fluids in pipe flows date back to the 
1950’s and 60’s e.g. [2], [3].  In [3], the pressure gradient versus 

bulk velocity was measured for a range of fluids that were 
nominally well-modelled with a power law rheology i.e.  

!=K !" n!1                                           (2) 

where K is the consistency and n is the flow index.  Here, 
0 < n < 1 is known as a shear thinning fluid and n > 1 a shear-
thickening fluid.  It was found that the friction factor expressed 
as a function of a modified (termed the Metzner–Reed) Reynolds 
number decreased with decreasing n.  A peripheral result to come 
out of this work is that some low concentration polymeric 
solutions that appear to behave as GN fluids in laminar flow, 
display visco-elastic behaviour when the flow becomes 
transitional or turbulent.  This is because the higher shear rates 
imply smaller time scales which can place the flow in a regime 
where visco-elastic effects cannot be ignored.  Consequently, 
there is a very real possibility of obtaining good agreement 
between measurement and simulation for laminar flow of any 
dilute polymer solution, yet diverging results in the transitional 
and turbulent flow regime.  Consequently, modelling opaque fine 
particle suspensions with optically clear polymer gels cannot be 
confidently undertaken solely on the basis of laminar 
measurements of shear rheology. In addition, unambiguous 
determination of the effects of modifying rheological parameters 
is difficult to accomplish in experiments because in practice, 
different parameters can rarely be varied independently. 

Computational modelling of non-Newtonian flows, especially 
using DNS, shows significant promise in helping to understand 
transition and turbulence in GN fluids. The main benefit of using 
a DNS technique is that once validated, it can be reliably used to 
model the flow behaviour and provide a detailed picture of 
turbulent structure that is almost impossible to obtain in opaque, 
fine particle suspensions. DNS has the added benefit that 
rheological effects such as visco-elasticity can be excluded from 
the modelling and that the affect of modifying individual 
rheological parameters can be easily isolated in a simulation. 
Finally, the technique also allows the validity of rheological 
models to be assessed in different flow scenarios. 

Previous results of DNS of turbulence in GN fluids were 
presented in [9], [10]. They showed that the effects of shear 
thinning behaviour on turbulent pipe flow shares similarities with 
drag reduction in visco-elastic fluids. In agreement with 
experiment, axial and radial turbulence intensities are reduced in 
shear-thinning GN fluids whereas axial intensities may increase 
marginally compared to the Newtonian case. Transition to 
turbulence, based on a generalised Reynolds number, was also 
delayed as the shear thinning behaviour increased. 



In the present study, the same DNS technique is used to 
investigate the turbulent pipe flow of power-law fluids for ReD ≅ 
7500. This extends the Reynolds number range used in [9] and 
provides a consistent set of results for flow indices spanning from 
strongly shear thinning (n = 0.4) to shear thickening (n = 1.4).  
The turbulent kinetic energy budget is calculated for these flows 
for the first time. 

Computational details 

Numerical method 

We use a spectral element–Fourier discretization that utilizes 
spectral elements to cover the pipe cross-section and periodic 
Fourier expansions in the direction of the pipe-axis. The flow is 
driven with a body force per unit mass in the axial direction that 
is set to achieve desired flow rates. Execution is fully parallel 
over planar Fourier modes, product terms are computed pseudo-
spectrally and not de-aliased. Time integration is second-order, 
using backwards-differencing for approximation of temporal 
derivatives in the velocity-correction scheme. See [10] for details 
of the method. 

Mesh Design 

Mesh design is based on a combination of 1) published 
Newtonian results, 2) our previous experience and 3) a 
preliminary set of simulations over a range of n=0.4–1.4.  We use 
a single element layout and fixed number of Fourier modes in the 
streamwise direction, but have varied the spectral element 
polynomial order, Np, and domain length to provide an acceptable 
trade off between resolution and domain size for different 
rheology.  Here we use wall coordinates defined in the usual way 
except with the constant Newtonian viscosity replaced by the 
mean wall viscosity given by !W = K1 n"W

1!1 n  where !W = 1
4 D!P !z . 

Figure 1 shows the upper part of the 161-element cross-sectional 
mesh, with details illustrated for polynomial order Np = 10 on the 
right side of the figure.  The first layer of elements is of thickness 
Δy+≈9.7 in the wall-normal direction, the second layer reaches to 
Δy+ ≈ 26.7, and on average the third to Δy+ ≈ 51.7. For Np = 10, 
the average wall-normal mesh spacing in the first layer of 
elements is thus Δy+ ≈ 1, while in the azimuthal direction we 
have Δx+ ≈ 5.5.  These spacings correspond well to typical values 
needed for wall-resolving DNS [8].   

 
Figure 1 Detail of the upper part of the computational mesh used in the 
simulations.  The left side highlights the spectral elements, and the right 
side the underlying nodal points for Np=10. 

Element sizes near the centre of the mesh are smaller than 
required to for Newtonian flow (at Re=7500), however we need 
better resolution near the centre in GN cases with n > 1. 

The choice of domain length and streamwise resolution is 
determined by a need to resolve near-wall structures, and to 
ensure that the domain lengths are sufficiently long that the 
periodic boundary condition does not adversely affect the 
predictions.  A streamwise length of Lz = 5D was found in [4] to 
be sufficient to reduce periodic correlation effects to acceptable 

levels in a turbulent Newtonian flow DNS. Here, the flow at 
n=0.4 is transitional, and our preliminary study suggested a 
domain length of 4πD ≈ 12.5D is required when n=0.4 to contain 
at least two transitional spots. Thus Lz = 4πD was chosen as the 
upper limit of domain length. As the flow index increases, near-
wall length scales reduce, (see Figure 2).  We adjust the domain 
length to ensure a minimum value of 2πD at n=1.4. 

In the Newtonian case, we use Lz = 7.57D, and mesh spacing in 
the axial direction of Δz+ = 11.5, well below the required value of 
15 given in [8]. For the non-Newtonian cases Δz+ remains 
approximately constant relative to near-wall length scales 
because the domain length Lz is adjusted as we change n.  Since 
the near-wall length scales vary in all directions, we also increase 
the polynomial order at higher n.  For n < 1 we use Np = 10, 
(giving approximately 16K mesh points over a 2D pipe cross-
section, and 5M nodes in total).  For n=1.2 we use Np =12 (23K 
2D nodes and 7.5M nodes in total), and for n=1.4, we use Np = 
14, (giving 32K 2D nodes and 10M total nodes). 

Time averaging 

Initial conditions are taken from earlier simulations on different 
meshes or from simulations at different flow indices.  
Simulations are run until the predicted total wall shear stress 
approaches the value predicted from the imposed forcing and the 
superficial flow velocity (Ub) has reaced an almost uniform 
value. Often both the wall shear stress and superficial velocity 
will oscillate about a mean value. The integration interval 
required to reach this state (provided the initial statistical 
condition is not too far removed from the final condition) is 
approximately between ten to twenty domain wash-through 
times. Once steady-state is reached, time-averaged statistics are 
amassed over another twenty to forty wash-through timescales. 

Turbulent Kinetic Energy Budget 

To develop energy budgets, we use the Reynolds decomposition 
with notation a =A+a′ to separate a variable into an ensemble-
mean and a fluctutating component. Noting that the density is 
constant, we use the kinematic viscosity ν =η/ρ, which is 
decomposed as ν =N +ν′. The kinetic energy per unit mass is 
defined as E =½ uiui and is also decomposed, E =Q +q. The 
mean flow kinetic energy per unit mass is Q = ½ Ui Ui and the 
turbulent kinetic energy per unit mass is q = 1

2 !ui !u . 

The mean flow energy equation is   

(3) 

An equation for the ensemble-average turbulent kinetic energy 
can be derived and is written 

(4) 

For Newtonian fluids, the numbered terms are usually known as: 

1: mean flow advection (MA); 
2: turbulent transport (TT); 
3: pressure-gradient work (PW); 
4: mean viscous transport (MVT); 
7: mean viscosity dissipation (MVD); 
10: production (PR). 



Terms 5, 6, 8 and 9 in equation 4 are zero for a Newtonian fluid, 
and for a GN fluid are named here: 

5: mean shear turbulent viscous transport (MSVT); 
6: turbulent viscous transport (TVT); 
8: turbulent shear stress–mean strain contraction (TSMS); 
9: turbulent viscosity dissipation (TVD). 

For pipe flow with constant bulk velocity, the mean flow 
advection (term 1) is zero. The mean viscosity dissipation (term 
7, MVD) is negative-definite, and the corresponding turbulent 
viscosity dissipation (term 9, TVD) can take either sign because 
the fluctuating viscosity is not positive definite (and thus it is not 
strictly a dissipation). Note that the turbulent stress–mean shear 
contraction (term 8, TSMS) appears with the same sign in both 
the mean and fluctuating-flow energy equations.  Pinho [7] also 
derives similar equations. 

Results 

Newtonian results and validation 

Validation of the code for these type of flows at lower Re is 
reported in [9].  In addition, data for turbulent flow of Newtonian 
fluid in a pipe at a nominal bulk flow Reynolds number ReD = 
7500 were compared to the experimental results in [11] for bulk 
flow Reynolds numbers of 5000 and 10 000 (not shown).  The 
experimental values for mean and fluctuating velocities, 
Reynolds shear stress and turbulent energy production bracket 
our simulations results except very close to the wall, where some 
of the experimental results are acknowledged to be unreliable. 

Results for power law fluids 

Contours of axial flow velocity at y+≈10  are presented in Figure 
2, where black is low speed and white high speed fluid.  Clearly 
seen is the decreasing streamwise correlation distance as n 
increases.  Also apparent is that the n=0.4 case is not fully 
developed.  The unsteadiness is comprised of just a few discrete 
“puff”-like structures.  Consequently we do not expect results 
from its analysis to be entirely consistent with the other n. 

The time-mean normalised velocity profiles in physical 
coordinates show only quite small differences (not shown), but 
plotted in wall coordinates reveal a consistent trend with flow 
index (see Figure 3).  The near wall behaviour for all n is almost 
identical, with a linear viscous sub-layer extending to y+ ≈ 10.  
Such a layer is anticipated in the analyses in [2], [3]. 

As the flow becomes more shear-thinning (n decreasing from 
unity), the profiles for the power law fluids deviate from, and lie 
above, the Newtonian profile.  For increasing shear-thickening (n 
increasing from unity) they deviate below the Newtonian curve. 
With the exception of n=0.4, these results also suggest the 
existence of a log-layer whose slope increases with decreasing 
flow index below unity, but with a slope that is approximately 
constant at 2.65 for n ≥ 1. There is no obvious logarithmic region 
in the case of n = 0.4. These profiles are suggestive of less well-
developed turbulence for more shear thinning flows (n < 1), and 
more well developed for shear thickening (n > 1).  

The time-mean viscosity profiles (normalized by mean wall 
viscosity) are shown in Figure 4. As expected, mean centreline 
viscosities increase as n decreases and vice versa. In wall 
coordinates it is clear that the mean viscosity for all simulations 
does not begin to deviate from the wall value until towards the 
edge of the viscous sub-layer at around y+ ≈ 6, hence a linear 
velocity profile for the near wall layer is expected on this basis. 

At the edge of the viscous sub-layer (y+ ≈ 10), the range of 
viscosity values for these flow indices is approximately ±50% of 
the wall value. Viscosity then rapidly deviates from the wall  

 
Figure 2 Instantaneous near-wall streamwise velocity contours on 
developed cylindrical surfaces obtained in preliminary calculations 
computed at a common domain length of 4πD.  

 
Figure 3 Mean axial velocity profile in wall coordinates.  Profiles for 
n <1 fall above the Newtonian curve n>1 fall below. 

 
Figure 4 Mean normalised viscosity profile in wall coordinates.  Note 
the wall viscosity is identical for each case by definition. 

value in the log layer and core flow. In log wall coordinates, the 
viscosity increases/decreases almost linearly outside the viscous 
sub-layer, indicating a power law relationship between viscosity 
and distance from the wall for n>0.4. There is no obvious 
functional relationship between the slope of the profile and the 
flow index that we have been able to determine. 

n=0.4 

n=1.4 

n=1.2 

Newt. 

n=0.8 

n=0.6 



Turbulence intensities 

Turbulence intensities and Reynolds stress are not presented but 
follow similar trends to those reported in [9], with all (except 
axial turbulence intensity) decreasing as the flow index 
decreases. This decrease in turbulence intensity is expected on 
the basis of the increase in mean viscosity — higher viscosity 
will provide additional dissipation in shear thinning fluids, 
resulting in larger, weaker streamwise vortices.  The slight 
increase in axial intensity compared to a Newtonian fluid has 
been observed in earlier work on shear thinning fluid [9], [10] as 
well as in visco-elastic fluids, e.g. [1] [5].  

Turbulence kinetic energy 

Space constraints limit the detail we can present, but some of the 
turbulence energy balance terms are plotted in Figure 5.  For 
n < 1 the turbulent kinetic energy (q) is higher in the linear, 
buffer and lower log-layers (and vice versa for n > 1) although 
the q-curves cross over the Newtonian curve at y+ = 80 
depending on the exact value of n.  The mean-flow turbulent 
production (term 10) is lower for n < 1 and occurs slightly further 
from the wall.  The mean viscous transport (MVT, term 4) does 
not vary much with n except very near the wall (y+ < 3), where it 
increases for n < 1. Because the mean viscosity is almost constant 
near the wall has the same value for all n, only the radial 
gradients of !srz !uz  contribute to MVT and increased values here 
reflect higher values of axial turbulence intensity, higher 
turbulent rate of strain and/or their closer correlation.  The mean 
viscous dissipation (MVD, term 7) increases for n < 1, especially 
in the linear region where its magnitude is 50% greater for n =0.6 
than the Newtonian case.  Because the mean viscosity in the 
linear region is almost uniform in the viscous sub layer (and 
essentially independent of n), this means that the turbulent rate of 
strain tensor is larger here for n < 1, i.e. the fluctuating velocity 
gradients are higher. 

   

  

  
Figure 5 Turbulent kinetic energy (top left), production (term 10, top 
right), mean viscous transport (term 4, middle left), mean viscosity 
dissipation (term 7, middle right), mean shear turbulent viscous transport 
(MSVT) (term 5, bottom left) and turbulent shear stress–mean strain 
contraction (term 8, TSMS) (bottom right). 

Of the four terms that do not appear in the Newtonian energy 
balance (MSVT, TVT, TSMS, TVD) only two of them make a 
significant contribution to the energy balance.  The mean shear 
turbulent viscous transport (MSVT, term 5) is more negative for 
n < 1 in the viscous sub layer, changing to be positive at around 

y+ ≈ 6. Because the mean wall strain rate Srz has a lower 
magnitude (and has negative sign) the viscosity-velocity 
correlation  increases more rapidly away from the wall for 

n < 1.  The turbulent shear stress-mean strain contraction (TSMS, 
term 8) follows the opposite trend of MSVT near the wall with 
higher values for n < 1, indicating a higher correlation .  The 
sum of the two major non-Newtonian contributions (not shown) 
is non-zero and provides an additional source of turbulent kinetic 
energy for n < 1 (and sink for n > 1) with a peak near the edge of 
the sub-layer. 

Conclusions 

These preliminary results show that although there are 
differences between the turbulence profiles in power law and 
Newtonian fluids, shear thinning (or thickening) rheology does 
not effect major changes to the nature of the flow at a generalised 
Reynolds number of 7500.  Shear thinning tends to damp 
turbulence velocity correlations except for the axial turbulence 
intensity.  There is reduced turbulence production as n decreases.  
The results suggest that the turbulence kinetic energy budget is 
modified primarily by the mean shear turbulent viscous transport 
that is negative in the viscous sub-layer (damping turbulence 
energy) and the turbulent shear stress-mean strain contraction 
that is a source there. 
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